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The measurement of the distance between diffusion tensors is the foundation on which any subsequent
analysis or processing of these quantities, such as registration, regularization, interpolation, or statistical
inference is based. In recent years a family of Riemannian tensor metrics based on geometric considerations
has been introduced for this purpose. In this work we examine the properties one would use to select metrics
for diffusion tensors, diffusion coefficients, and diffusion weighted MR image data. We show that empirical
evidence supports the use of a Euclidean metric for diffusion tensors, based upon Monte Carlo simulations.
Our findings suggest that affine invariance is not a desirable property for a diffusion tensor metric because it
leads to substantial biases in tensor data. Rather, the relationship between distribution and distance is
suggested as a novel criterion for metric selection.

© 2009 Elsevier Inc. All rights reserved.
Introduction

The unique microstructural geometric information provided by
Diffusion Tensor MRI (DTI) (Basser et al., 1994) has made it a
widely used research and clinical tool (Basser and Jones, 2002; Assaf
and Pasternak, 2008). At this point in the development of DTI a
statistical framework is needed to characterize tensor variability,
permitting group comparisons and statistical inferences based on
the entire tensor. Such a tensor-variate statistical framework would
subsume univariate statistical distributions for scalar (tensor-
derived) quantities, such as the fractional anisotropy (FA), Trace,
or the apparent diffusion coefficient (ADC), which can only account
for a portion of the variability. In addition, tensor processing tools
are constantly being developed for tasks such as artifact correction,
noise removal, segmentation, and image transformations (Lenglet
et al., 2009). The literature of recent years reflects these develop-
ments, supplying numerous options for tensor manipulations and
analysis (e.g., Weickert and Hagen, 2006, and references therein).

A prerequisite for most, if not all, tensor analysis methods is the
ability to compare tensors and, hence, to define the distance between
them. The general notion of distance involves a connected Rieman-
nian manifold (Eisenhart, 1940). The manifold includes the set of all
points in the space and a metric, G(x)={gij(x)}, defines the infinite-
ed in Pasternak et al. (2008).
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simal distance: ds2=dxTG(x)dx, where x is the coordinate of a point
on the manifold for a chosen coordinate system. Any positive-definite
and symmetric metric is admissible. The distance function is defined
as the geodesic, i.e., the shortest path on the manifold.

To define the geometric distance between tensors, a metric and a
local coordinate system for tensor representation are chosen.
Therefore, if more than one metric is admissible, selecting among
them and determining which coordinate-metric combination would
best characterize the distance between tensors are challenging issues.
For these tasks, we need additional information and constraints,
derived by empirical observation or physical considerations relating
to the system under study.

A tensor-variate statistical framework for diffusion tensors was
proposed in Basser and Pajevic (2003), placing diffusion tensors on a
Euclidean manifold, with a constant metric, G(x)=I, resulting in
ds2=tr((dD)TdD), where D is the tensor coordinates in the canonical
tensor coordinate system, and tr denotes the matrix Trace. The
geodesic between any two tensors, D1 and D2, with this metric, is
simply a straight line, or the Euclidean distance

DistEuc D1;D2ð Þ = jjD1 − D2jj; ð1Þ

where ||·|| denotes the Frobenius norm. The Euclidean metric is
defined over the entire space of symmetric matrices and is rotation
invariant, which makes it invariant for the selection of orthogonal
coordinates, but not for the selection of non-orthogonal tensor
coordinate systems.

In another framework the distance function is restricted to affine
invariance (which includes rotation, scale, shear, and inversion
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invariance) and operates only on tensors belonging to the space of
positive definite symmetric matrices, S+ (Batchelor et al., 2005;
Pennec, 2006a;Moakher, 2006; Lenglet et al., 2006; Fletcher and Joshi,
2007; Gur et al., 2009). The Affine-invariant metric (Pennec, 2006a), a
Reimannian metric that satisfies these requirements, has an infini-
tesimal distance ds2=tr((D-1dD)2) (Maaβ, 1971). This distance is
affine-invariant and therefore does not depend on the choice of tensor
coordinate system (see Appendix A). The corresponding geodesic is
found by integration (Maaβ , 1971):

DistAff D1;D2ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr log2 D−1

1 D2
� �� �q

: ð2Þ

The matrix logarithm, log(D), is defined in Appendix B. The Affine-
invariant metric has led to the development of a family of Reimannian
metrics (Pennec, 2006b) and to the development of Reimannian sta-
tistical frameworks for tensors (Pennec, 2006a; Lenglet et al., 2006).

The Affine-invariant metric was proposed as the natural metric for
diffusion tensors, since, in theory, diffusion tensors are positive semi-
definite and should reside on a symmetric space (Terras, 1988). The
Euclidean metric was deemed not appropriate for diffusion tensors,
specifically since it admits non-positive tensors and exhibits the
“swelling effect,”where interpolating two tensors yields a tensor with
a determinant larger than either of the original tensors (Batchelor
et al., 2005; Arsigny et al., 2006). It was shown that the Affine-
invariantmetric coincides with the Fisher informationmetric (Lenglet
et al., 2006) and with the Kullback–Leibler divergence (Wang and
Vemuri, 2005; Lenglet et al., 2006). In addition, the Log-Euclidean
metric with its corresponding geodesic (Arsigny et al., 2006),

DistLogEuc = jjlog D1ð Þ− log D2ð Þjj; ð3Þ

was proposed as an efficient approximation for the computationally
demanding Affine-invariant metric. Some scientists have since begun
adopting the use of the new family of metrics for tensor processing
applications (Weldeselassie and Hamarneh, 2007; Malcolm et al.,
2007; Commowick et al., 2008).

In this paper we identify the Affine-invariant metric as the appro-
priate metric for positive physical quantities that are log-normally
distributed, and the Euclidean metric appropriate for quantities that
are normally distributed. We then examine whether diffusion MRI
quantities can be classified as normally or log-normally distributed
quantities. In order to investigate the physical meaning and
consequences of using the affine invariance constraint we consider
the simpler case of isotropic diffusion, which has many of the same
properties and features of the 6D diffusion tensor space. We provide a
statistical analysis that estimates the distribution of Monte Carlo
simulated ADCs and compare the results of applying the Euclidean
and Affine-invariant metrics. A similar simulation framework is used
to examine diffusion tensors utilizing variability maps obtained for
the Log-Euclidean and the Euclidean metrics. The results are then
validated using diffusion MRI acquisitions.

Theory

In order to select a metric for diffusion quantities we classify their
asymptotic distribution by analyzing the properties of the quantity.
We then test if the asymptotic distribution is in line with distributions
generated by specific sources of variability in the acquisition of
diffusion MRI.

Reduction to a one-dimensional problem

The DTI framework is especially important when dealing with an
anisotropic medium, when different ADCs are measured along diffe-
rent orientations (Basser et al., 1994). The diffusion equation dictates
that (for a Gaussian displacement distribution) the orientational
variability of the ADC be fully described by the diffusion tensor (Crank,
1975). Given that a distance function for diffusion tensors must
account for this orientational variability and be applicable for all
diffusion tensors, we find it useful to first consider a metric for
isotropic tensors. An isotropic tensor describes the case where the
diffusivity in all directions is equal. In this case the tensor has three
equal eigenvalues:

Diso = λI: ð4Þ

The eigenvalue λ describes the entire 3D diffusion process and
equals the ADC, d (Basser and Jones, 2002). Eq. (4) reduces the
parametrization of a diffusion tensor to a scalar, thus the metric
required for the special case of isotropic tensors is a metric for scalars.
Using Eqs. (2) and (4), the Affine-invariant geodesic for isotropic
tensors becomes

DistAff Diso
1 ;Diso

2

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr log2 λ1Ið Þ−1λ2I

� �� �q
=

=
ffiffiffi
3

p
j log d2 = d1ð Þ j =

ffiffiffi
3

p
j log d2ð Þ− log d1ð Þ j ;

ð5Þ

where d1 and d2 are the ADCs for the isotropic tensors D1
iso and

D2
iso, respectively. This geodesic can also be derived from the metric

G(d)=3/d2. We note that for isotropic tensors, the Affine-invariant
metric is identical to the Log-Euclidean metric. Similarly, the
Euclidean distance between isotropic tensors is simply

DistEuc Diso
1 ;Diso

2

� �
=

ffiffiffi
3

p
jd2 − d1 j ; ð6Þ

which means that the metric, G(d)=3, is constant.

The effect of distribution on metric selection

In order to choose between the metrics we match their properties
with properties of the measured diffusion quantities. This procedure
is common practice in statistical analysis, where, for example, when
attempting to estimate a true value of a measured parameter, one
has to account for the expected sources of variability (such as noise
or sample heterogeneity) that may cause a distribution in the
measurements; if the distance function is appropriate for the
distribution then the true value is better estimated (Jeffreys, 1939).
When a certain distribution is complicated or unknown, a common
practice is to approximate it with a simpler distribution. The normal
distribution is the favorite candidate since the central limit theorem
(CLT) states that the asymptotic distribution of a variable that is the
sum of independent factors (each with its own mean and variance) is
normal (Mood et al., 1974). Indeed, many measurable quantities are
found to be normally distributed. Another popular approximation
assumes that the quantities are log-normally distributed, which
unlike the normal distribution, is defined only for positive numbers.
The approximation is again backed by the CLT that dictates a log-
normal distribution for a variable that is the product of independent
factors (Benjamin and Cornell, 1970). Accordingly, many measurable
quantities are defined as positive, and the log-normal distribution
approximates them well (e.g., Koch, 1966).

Selecting to approximate a distribution with a log-normal or a
normal distribution determines which distance function and analysis
method better suit the quantity. Let x be a normally distributed
random variable, then an appropriate distance between x1 and x2, two
realizations of x, is the Euclidean distance,

DistEuc x1; x2ð Þ = k jx2 − x1 j : ð7Þ

Due to the relative simplicity and ubiquitousness of the normal
distribution many analytical and statistical tools have been designed



1 This is in line with the definition of a “Cartesian tensor,” a tensor whose
eigenvalues are Cartesian quantities (Tarantola, 2006).
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for this distribution. For example, the maximum likelihood estimator
(MLE) of the expected value, E[x], is the arithmetic mean,

μ̂̂arithmetic =
1
n

Xn
i=1

xn: ð8Þ

The log-normal distribution has a convenient property that by
taking a log transform it becomes a normal distribution. Let y be a log-
normal distributed random variable, then

x = log y= y0ð Þ; ð9Þ
where y0 is any fixed value of y, is a normally distributed random
variable. This relationship provides a mechanism for adopting all
normal distribution related tools to the log-normal distribution.
Specifically, the appropriate distance is the Logarithmic distance,

DistLog y1; y2ð Þ = k j log y2 = y1ð Þ j = k j log y2ð Þ− log y1ð Þ j ; ð10Þ

and the MLE for E[y] is the geometric mean,

μ̂̂geometric =
Yn
i=1

yi

 !1=n

= exp
1
n

Xn
i=1

log yið Þ
 !

: ð11Þ

An important property of the logarithmic distance function (Eq. (10))
is that for any αaℝ;DistLog y1; y2ð Þ = DistLog αy1;αy2ð Þ, i.e., it is scale
invariant.

In this paper we use the term “Jeffreys,” coined by Albert Tarantola
in honor of Sir Harold Jeffreys (Tarantola, 2006, 2005), for physical
measurable quantities that are more likely to be log-normally
distributed, and the term “Cartesian” for quantities that are more
likely to be normally distributed. The two quantities are related by the
log transformation in Eq. (9). A comparison of Eq. (10) with Eq. (5)
and Eq. (7) with Eq. (6) clearly shows that the difference between the
distance functions stems from how the ADC quantity is classified: for a
Jeffreys quantity, the Affine-invariant metric is appropriate; for a
Cartesian quantity, a Euclidean metric is appropriate. There are two
criteria that can help identify a potential Jeffreys quantity: the
quantity must be arbitrarily scaled, in which case the scale-invariant
metric accounts for its physical quality, and the quantity must be
positive (Tarantola, 2006, 2005).

Metric selection for diffusion quantities

Studying the properties of the diffusion weighted (DW) signal
helps us determine whether the ADC is a Jeffreys or a Cartesian
quantity. The DW signal is obtained by a pulsed-field gradient (PFG)
MR experiment that makes the MR signal sensitive to the displace-
ment of water molecules along a certain orientation (Stejskal, 1965).
The DW signal is the magnitude of a complex quantity so it is always
positive, limited by the highest integer value allowed. We expect the
signal to carry information regarding diffusion, but the intensity of the
signal is known to be proportional to the quantity of molecules (Carr
and Purcell, 1954). The exact ratio is determined by various machine
and MR-dependent parameters (Hahn, 1950). For instance, a com-
pletely homogenous object scanned with a range of voxel sizes on
different MRI scanners (with different static magnetic fields and
gradient strengths) and different pulse timings will yield a variety of
signal intensities that clearly does not imply any physical qualities of
the object itself and its diffusion properties, which remain the same.
The DW signal is therefore positive and scale sensitive, which makes it
a Jeffreys quantity.

As a Jeffreys quantity, the DW signal has a related Cartesian
quantity, which we can find using Eq. (9): we set the non-DW signal,
S0, as the origin, and compare any other signals obtained, Si, by taking
their logarithms:

x = log Si = S0ð Þ: ð12Þ
Interestingly Eq. (12) is known to be proportional to the ADC (up to
the scale factor b) (Stejskal, 1965):

d = − b−1log Si = S0ð Þ: ð13Þ

This means that d, the ADC, is the Cartesian quantity associated with
measured DW signals.

The diffusion tensor is a generalization of the ADC to a higher
dimensional space (Torrey, 1956): its eigenvalues are the ADCs along
the principal axis (Basser et al., 1994). Since the eigenvalues of the
diffusion tensor are Cartesian quantities, a scale-invariant metric is
not appropriate1 as shown above in the case of isotropic tensors.
Hence, affine invariance, which encompasses scale invariance, is not a
desirable property either. An appropriate metric for diffusion tensors
is the one in Eq. (1), associated with a Euclidean metric.

The relationship between MR variability sources and distance

The result above suggests that given the type of measurement, the
accumulative effect of sources of variability on the DWIs is expected to
be log-normally distributed, while the accumulative effect of the
sources of variability of the ADCs is expected to be normally
distributed. Therefore, the Euclidean metric is appropriate for ADC
and diffusion tensor distance functions. In practice the distribution of
the diffusion quantity estimates is affected by a number of variability
sources, each with its own statistical distribution. In the next section
we cover known sources of variability in diffusion measurements and
check whether they are in line with the theoretic prediction of an
asymptotic distribution.

Stochastic variability
Self-diffusion is a stochastic process, where molecules are free to

move in any direction. While predicting the motion of a single
molecule is not possible, statistics can help us predict themotion of an
ensemble of molecules that all have the same intrinsic diffusion
coefficient. The Einstein equation for free diffusion caused by
Brownian motion establishes the fundamental defining relationship
between the diffusion coefficient and themean-squared displacement
along an axis (Einstein, 1926)

σ2 tð Þ = E xt−x0ð Þ2
h i

= 2dt: ð14Þ

The position along the axis at time t is xt; x0 is the position at the
origin. This relationship defines the diffusion coefficient, d, as
proportional to the variance of particle displacements, σ2(t), at
time t, and arises from the normal distribution of particles
expected for Brownian motion, xt∼N(x0,σ2(t)). The stochastic
process dictates the distribution of the estimated diffusion
coefficient

d̂f
σ2 tð Þ
2tn

χ2
n =

2dt
2tn

χ2
n =

d
n
χ2

n; ð15Þ

and its variance

Var d̂
� �

=
2d2

n
;

where χk
2 is the chi-square distribution with k degrees of freedom.

The derivation of Eq. (15) is given in Appendix C. The distribution
in Eq. (15) suggests that variability in the measurement of
diffusion coefficients originates from the stochastic nature of the
experiment itself, even when other sources of variability such as
measurement errors and artifacts are neglected. The same
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argument holds for diffusion tensors. In that case the displacement
x– x0 is a vector in R

3, and the χ-squared distribution is
generalized by the Wishart distribution (Jian et al., 2007).

In the MR diffusion experiment a typical voxel contains a very
large number of molecules on the order of n=1017.2 Each molecule
follows an identical normal probability distribution, and the displace-
ment of one molecule is assumed independent of the other. This
means that for all practical considerations we can assume n→∞.
According to the central limit theorem, the chi-square distribution
asymptotically becomes a normal distribution, i.e., χn

2→N(n,2n) and
therefore, the distribution of the estimated ADC, given in Eq. (15), can
be approximated as

d̂f
d
n
N n;2nð Þ = N d;

2d2

n

 !
: ð16Þ

As a result, the estimate of the diffusion coefficient from a large
number of displacement measurements is normally distributed
around the real diffusion coefficient, d, with a variance that is
inversely proportionally to n. This distribution exists even in a
completely noise-free environment. However the large n in realistic
MR experiments dictates that this source of variability vanishes.

Variability caused by Johnson noise
In addition to the stochastic nature of the ADC, its estimation from

diffusion NMR is affected by noise and other artifacts. Even assuming a
static magnetic field, a static measured object, and no hardware or
sequence artifacts, the complex RF measurement contains Johnson
noise. This noise is realized as a Rician distribution in the magnitude
images (Henkelman, 1985), and the effects on DW signals can be
modeled using aMonte Carlo simulation (Pierpaoli and Basser, 1996). It
is a common practice in MRI to increase the accuracy of the estimation
by performing repetitive measurements, under the assumption of a
constant true diffusion coefficient over time. As shown in the previous
paragraph, this assumption is reasonable given the large number of
molecules in each voxel. As a result, a number of realizations of ADCs are
obtained that are expected to differ from each other by the acquisition
noise (Pajevic and Basser, 2003). Estimation is usually performed by
averaging: if the ADCs are Jeffreys quantities, their proper mean is the
geometric mean in Eq. (11) and if the ADCs are Cartesian quantities,
their proper mean is the arithmetic mean in Eq. (8). Determining
whether the normal or log-normal distributions better approximates
the ADC distribution will determine which metric is preferable.

Additional sources of variability
Johnson noise can be easily generated and its effects on MRI

measurements have been widely investigated (Henkelman, 1985;
Jones and Basser, 2004; Koay and Basser, 2006; Andersson, 2008).
However, in reality, Johnson noise is just a single component among
many other types of noise and artifacts, most of which have not been
modeled using a parametric distribution. To name a few, there are
eddy currents, which depend on the gradientmagnitude and direction
and specific acquisition sequence used (Rohde et al., 2004);
reconstruction artifacts originating from the use of multiple surface
coils (Koay and Basser, 2006); and motion artifacts, due to rigid head
motion or non-linear cardiac pulsation effects (Skare and Anderson,
2001; Pierpaoli et al., 2003). These sources of variability affect the
accuracy of intra-voxel estimations. When estimating cross-voxel (or
inter-voxel) quantities for example, in region of interest (ROI)
analysis or for spatial manipulations, biological heterogeneity is also
2 If there are 1023 molecules in a mole or liter of water, then there are 1023-6 = 1017

water molecules in a cubic millimeter, which is about the size of a voxel. The voxel
may contain other material besides water, thus reducing the quantity of water
molecules.
a confound. In addition when comparing cross-subject quantities, a
population variability factor is encountered. Differences in hardware,
sequences, and even clinical protocols contribute another source of
variability. Since the parameterization of all of these sources is
extremely hard, and since so many different and independent sources
are involved, it is reasonable to approximate the distribution by either
the normal or log-normal distributions.

Although it is hard to parameterize, we can still quantify the total
effect of noise as the variability that is found within a population that
is supposed to be homogeneous. This can be done using designated
statistical frameworks (Basser and Pajevic, 2003; Lenglet et al., 2006;
Commowick et al., 2008).

Methods

A Monte Carlo simulation of Johnson noise is used to create a
distribution of noisy DWI, ADC, and diffusion tensors. For the DWIs
and ADCs, the distributions are statistically tested for normality and
for log-normality, and the bias in the estimation of the samplemean is
calculated for the arithmetic mean and geometric mean. For the
diffusion tensor distribution a variance map is produced for a data set
that is influenced by generated Johnson noise alone, and for an
acquired MRI data set, which is subject to additional types of
acquisition noise and artifacts. The variability maps for the Euclidean
and the Log-Euclidean metrics are then compared.

Monte Carlo DWI and ADC simulations

The Monte Carlo experiment simulates a repeated MRI acquisition
affected solely by Johnson noise. The experimental design follows one
found in Pajevic and Basser (2003): an initial ADC, d ̄, b-value (we use
b=1000 s/mm2), and non-diffusion-weighted baseline image, S 0̄, are
selected. The noise free DWI, S̄, is calculated as S ̄=S ̄0exp(–bd ̄). Noise
is simulated as a random variable drawn from a normal distribution
with zero mean and variance, σnoise

2 , and is added to both real and
imaginary channels of the DWIs. The magnitude of both channels is a
Rician distributed random variable S∼Rice(σnoise, S ̄). Similarly
S0∼Rice(σnoise, S ̄0) is the noisy baseline DWI. A set of n noisy S and
S0 couples is generated for a range of baseline values and noise
variances. The ADC distribution is generated by calculating d=–log
(S/S0)/b for each S and S0 couple. The log-normal distribution does
not allow non-positive values and therefore a positive ADC,
d+=exp(L), is estimated by minimizing |S/S0–exp(–bexp(L))|.
This minimization is the scalar form of the 3D positive definite
tensor estimation proposed in Fillard et al. (2007). The solution for
this minimization is d+=d if dN0 and d+=ɛ otherwise, where ɛ is
a small positive value.

Hypothesis tests
As demonstrated above, the Euclidean metric is associated with a

normal distribution and the arithmetic mean and the Affine-invariant
metric family is associated with a log-normal distribution and the
geometric mean. In order to assign an adequate metric we test for
normality and for log-normality of the DWI and ADC distributions,
using the Anderson–Darling (AD) hypothesis test (Anderson and
Darling, 1952). The AD test calculates a statistic that is a distance
measure between the sorted samples and a commutative distribution
function (CDF) of a chosen distribution. In order to calculate the CDF,
the AD test estimates the sample mean and sample variance. The test
provides a significance level for rejecting a null hypothesis of the type,
“The samples were drawn from the distribution X.” This is done by
comparing the statistic against critical values that depend on the
selected distribution and the sample size. Critical values for the AD
test are available for several distributions, including the normal and
log-normal distributions (D'Agostino and Stephens, 1986). We chose
to use the AD test since it estimates the sample mean and variance,
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unlike other tests, such as the Kolmogorov–Smirnov test, that require
a prior knowledge of the mean and variance of the underlying
distribution (D'Agostino and Stephens, 1986). A procedure for
calculating the AD statistic is given in Appendix D.

In order to check whether a distribution is normally distributed,
we apply the AD test with the null hypothesis,H0, that the distribution
is normal. In order to check whether a distribution is log-normally
distributed we apply the AD test with the null hypothesis, H0, that the
distribution of the log transformed data is normal. This is equivalent
to checking whether the initial data is log-normally distributed. In
order to check whether ADC are log-normally distributed we apply
the log transform on the d+ distribution. Like any other statistical
tests, the AD test results in a decision to reject or not to reject the null
hypothesis for a given significance level, α (here α=0.05). Each
hypothesis test was applied on 100 independent Monte Carlo
generated sample sets. The False Discovery Rate (FDR) method is
then applied in order to account for the multiple hypothesis test
comparisons (Benjamini and Hochberg, 1995). The FDR method
modifies the p-value for the given α and dictates howmany of the 100
independent hypothesis tests should be rejected.

The results are visualized as surfaces that represent the hypotheses
rejection rate at various noise levels and baseline levels, and each
surface is calculated for a different sample size (we used 32, 252, and
1002 samples), indicating the simulated repetitions. A high rejection
rate indicates that there is enough evidence to reject the null
hypothesis (i.e., it was rejected in many independent tests).

Bias estimation
For each distribution d̂ and Si are estimated either as the arith-

metic mean (using Eq. (8)) or as the geometric mean (using Eq.
(11)). The deviation of an estimated parameter, x ̂, from its original
value, x ̄, is obtained from the estimated normalized bias, calculated
as bias=(E[x ̂]– x̄)/x (Pajevic and Basser 2003).

Repeated MRI acquisition

In the MRI experiment a DTI acquisition of a healthy volunteer was
repeated 20 times. A 3 T MRI scanner (GE-Signa) with 16 channel
phased array head coils was used (image reconstruction using GE's
ASSET technology). The images were acquired using a PGSE-EPI
sequence with the following parameters: TR/TE of 12,000/86.1 ms,
matrix size of 128×128, Field of view (FOV) of 20 cm and slice
thickness of 2.5 mm. The images were acquired for 6 non-collinear
gradient orientations with b-value of 1000 s/mm2, and a single non-
diffusion-weighted image (b=0). All 140 DWIs were corrected for
headmotion using rigid body transformations (SPM2, UCL) relative to
the first DWI volume acquired, and the gradient orientations were
compensated for the rotation component of the transformation. A
segmentation mask was applied on the aligned images to exclude
background noise. In addition, voxels where any of the DWIs provided
zero signal (due to digitation artifacts) were excluded to prevent
artificial bias in the tensor estimation. Diffusion tensors were
estimated using a linear fit (Basser and Pierpaoli, 1998) and where
negative tensors were found, the Log-Euclidean non-linear tensor fit
(Fillard et al., 2007) that assures positive-definite tensors was applied.
This tensor fitting procedure is used in order to allow the use of the
Log-Euclidean metric, which requires positive definite tensors. As a
result 20 tensor maps, one for each repetition, were obtained. The
tensors were represented using the canonical tensor representation.

A second data set, acquired on the same scanner with a second
volunteer, included 8 repetitions of a DTI sequence with the
following parameters: TR/TE of 8500/80.9 ms, matrix size of
128×128 and 1.4 mm3 voxels. The images were acquired for 15
non-collinear gradient orientations with a b-value of 1000 s/mm2,
and a single non-diffusion-weighted image (b=0). The smaller
voxel size and shorter TR, compared with the first data set, yielded
noisier images. The analysis of the data was identical to that of the
first data set, resulting in 8 tensor maps, one for each repetition.

Monte Carlo DTI simulations
A single repetition of the above-mentioned first MRI acquisition

was used in order to simulate the effect of Johnson noise on different
types of diffusion tensors that appear in brain imaging. Monte Carlo
simulation was again used. Here the positive definite tensors that
were estimated for the MRI acquisition were used as the initial
tensors. The appropriate noise-free DWIs for the 6 gradient orienta-
tions were then calculated as Si=S0exp(–bgiTDgi), where gi is the ith
applied gradient orientation. Noisy replicates for all images were then
synthesized, and each noisy realization was fit with a tensor by the
Log-Euclidean tensor fit. This procedure resulted in a distribution of
tensors for each voxel that simulates acquisition repetition where
only Johnson noise affects the variability. We used 20 simulated
repetitions to match the MRI acquisition.

Variability maps
Variability was estimated using the 4th-order tensor estimation

as proposed in Basser and Pajevic (2003). We use the 6×6
representation, M, of the 4th-order covariance tensor and tr(M) as
a measure of the total diffusion tensor variability. In order to obtain
MEuc, each diffusion tensor, D, was vectorized to a 6 element
vector, D½ � = Dxx;Dyy;Dzz;

ffiffiffi
2

p
Dxy;

ffiffiffi
2

p
Dyz;

ffiffiffi
2

p
Dxz

� �
(Koay, 2009). The

matrix M was then defined as

MEuc =
Pn

i = 1 Di½ �− D
� �� �

Di½ �− D
� �� �T

n − 1
: ð17Þ

The mean tensor, D̄, was replaced by the original tensor in the Monte
Carlo simulation experiment and was estimated as the arithmetic
mean for the MRI experiment. In a similar manner, the Log-Euclidean
6×6 representation of the 4th-order tensor can be calculated
(Commowick et al., 2008) as

MLog =
Pn

i = 1 log Dið Þ½ �− log D
� �� �� �

log Dið Þ½ �− log D
� �� �� �T

n − 1
: ð18Þ

In the MRI experiment, D̄ was estimated as the geometric mean
(Fillard et al., 2007). The sample size, n, is n=100 for the Monte
Carlo experiment, and n=8 for the MRI experiment. Finally the
quantity that summarizes the variability is tr(M), which is calculated
for each voxel.

Results

DWI Monte Carlo simulations

Fig. 1 presents the results of the AD tests for normal
distribution (top row) and log-normal distribution (bottom row)
of the Monte Carlo simulated DWI sample sets. While the DWIs are
Rician distributed, the AD test results suggest that their distribu-
tion can be safely approximated by both normal and log-normal
distributions: for a low number of repetitions there is not enough
evidence to reject either the normal or the log-normal distribution
hypothesis; as the number of repetitions increases, there is enough
evidence to reject both the normal and log-normal hypotheses
only for low SNR levels. It seems that the baseline level of S0 does
not affect the tests and that the normal distribution assumption is
rejected for a lower number of repetitions than for the log-normal
distribution.

Fig. 2 shows the bias of the arithmetic (right) and geometric (left)
mean DWI estimation. The two cases show a similar dependence on
SNR and baseline value, yet log-normal distribution consistently
better approximates the true distribution, yielding slightly less bias in
the estimation of the geometric mean relative to the arithmetic mean.



Fig. 1.Monte Carlo simulation of noisy DW signal resulting in a distribution of DWI values. The surfaces represent the result of the Anderson–Darling (AD) hypothesis tests for normal (top row) and log-normal (bottom row) distributions, for
various numbers of repetitions. As the height of the plane increases, there ismore confidence in the rejection of the hypothesis. Both the normal and log-normal distribution hypotheses can only be rejected for a large number of repetitions and
low SNR.
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Fig. 2. Bias estimation. The surfaces represent the bias in the estimation of the arithmetic (right) and geometric (left) mean DWI compared with the initial noise-free DWI value. The
shape of both surfaces is similar, yet the bias of the geometric mean is consistently lower.
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This result supports the theoretic finding that the scale-invariant
metric is more appropriate for DWIs.

ADC Monte Carlo simulations

Fig. 3 presents the results of the AD tests for normal (top row) and
log-normal (bottom row) distributions applied to the ADC sample
sets. The results in this figure are in line with the expectation that the
ADC will be normally distributed, due to its log relation with the log-
normal distributed DWIs: the normal distribution hypothesis cannot
be rejected for a small number of repetitions. As the number of
repetitions increases, the hypothesis is rejected for increasing ADC
values and decreasing SNR. Yet even for a large number of repetitions
the normal distribution hypothesis cannot be rejected for a wide
range of ADC and SNR values. The log-normal distribution hypothesis
is rejected for small values of ADC or for low SNR values, even for a
small number of repetitions. Similar to the normal distribution, as the
number of repetitions increases, the hypothesis is rejected both for
increasing ADC and decreasing SNR, but unlike the normal distribu-
tion, the hypothesis is rejected for low ADCs as well. As a result the
log-normal distribution is admissible only in a small region around
ADC=1·10-3 mm2/s and high SNR. In general the rejection rate as a
function of the repetition number rises much faster than that of the
normal distribution test.

Fig. 4 shows the bias of the estimated arithmetic (right) and
geometric (left) mean ADC. While the biased behavior seems similar
for increasing ADC values, the geometric mean is consistently more
biased than the arithmetic mean. In addition the geometric mean is
extremely biased for low ADC values, while being very small for the
arithmetic mean. This found bias predicts that the most effect of
metric selection is in the range of low ADC values.

DTI Monte Carlo variability simulations

Figs. 5A and B show the ADC and FA maps of a single repetition of
the MRI experiment. The tensors are all positive, hence FA is never
larger than 1. This set of tensors was used to generate data sets of 20
noisy replicates using the DTI Monte Carlo simulation described
above. There were 5 different data sets, with increasingly higher noise
standard deviation (SNR=50, 20, 15, 7 and 3.5) and Fig. 5 presents
the Euclidean and Log-Euclidean variability maps for the data sets
with SNR=3.5 and SNR=50. The variability maps are shown with a
logarithmic gray scale value, and each pair of images has the same
dynamic range (adapted to minimal and maximal values in the
images). The mean intensity and correlation coefficient with the FA
and ADC maps for all of the data sets are given in Table 1.

As expected, both the Euclidean (Figs. 5C and F) and Log-
Euclidean variability maps (Figs. 5D and G) show over all higher
variability as the noise increases (see Table 1 for the mean intensity
values of all data sets). The Euclidean variability map is similar to the
ADC map for all repetitions (correlation coefficients can be found in
Table 1): the highest variability is observed in the CSF; in brain tissue
voxels, the variability is relatively lower and indifferent to tissue
type. The level of similarity remains the same through the different
noise levels. The dependency of the variability map on ADC values is
expected since, although the noise absolute level is homogenous, the
baseline signal of a DWI depends on the ADC (lower signal in higher
ADC voxels such as CSF voxels). As a result higher ADC voxels are
expected to have lower SNR and higher variability. Although the
noise added dictates dependency on ADC, the Log-Euclidean
variability map is inversely proportional to an ADC map, with
decreasing similarity as noise increases (see Table 1 for correlation
coefficients). In contrast, the Log-Euclidean maps show higher varia-
bility in white matter voxels compared with the Euclidean map and
resemble an FA map.

Figs. 5E and H shows the number of negative tensors that were
found in the linear tensor fit. Negative tensors appear even for high
SNR, and their number increases considerably as SNR decreases. Most
of the negative tensors are found in white matter structures or next to
the skull.

Repeated MRI measurements

Fig. 6A shows the variability map for the 20 DTI acquisition repe-
titions that were calculated using the Euclidean metric, and Fig. 6B
shows the Log-Euclidean variability map for the same repeated tensor
experiment. Overall, the maps are similar to the synthetic maps,
suggesting that there were no significant artifacts in this experiment.
A small additional high valued variability score can be found, espe-
cially around the center of the image. These could be due to pulsation
or image reconstruction artifacts. Figs. 6D and E show the variability
maps constructed for the same data sets without correcting for
motion. Hence, an additional motion related variability is expected to
be encountered. Indeed, the maps show increased variability due to
motion induced partial volume artifacts. Interestingly, the effect on
the Euclidean map is mostly around CSF boundaries, while the effect
on the Log-Euclidean map is all around the image, mostly in white
matter boundaries. There was not a significant change in the number
of negative tensors before and after motion correction (Figs. 6C and F).

This result presents the utility of the variabilitymaps to explore the
effect of various analysis methods or noise sources. Here, comparing
the figures before and after motion correction demonstrates that the
Log-Euclidean metric is more sensitive than the Euclidean metric to
partial volume effects in white matter voxels. An additional compa-
rison is given in Fig. 7, which shows the Euclidean and Log-Euclidean
maps calculated for higher resolution, noisier, 8 repetition data. Due to
the increased resolution, we expect additional noise components
(such as pulsation artifacts) to introduce additional variability. This is



Fig. 3. Monte Carlo simulation of noisy ADCs. The top row presents the results of the AD test for normal distribution. The bottom row shows the results for testing log-normal distribution. The ADC distribution is consistently better
approximated by the normal distribution. Distribution around small ADC values is rejected for being log-normal even for a low number of repetitions.
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Fig. 4. The bias estimations for the arithmetic mean (right) and geometric mean (left) of the ADC distributions, compared to the initial noise-free ADC value. The geometric mean has
an extreme bias for low ADC values. Otherwise, the shapes are similar. The plots for both geometric and arithmetic means for a representative SNR level (SNR=30) (bottom) show
that the geometric mean is consistently less biased than the arithmetic mean. The inset shows a rescaled portion of the higher ADC part of the graph.
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indeed the case in the Euclidean map (Fig. 7A), where, in addition to
the baseline SNR, we can now see increased variability in a space-
dependent pattern. The additional noise is mainly in the center of the
image, and the image is less similar to the ADC image (Fig. 7C). This
could be the effect of pulsation, motion, or multiple channel
reconstruction, which are all space dependent. The additional noise
component is less visible in the Log-Euclidean variabilitymap (Fig. 7B),
which still resembles an FA map (Fig. 7D) suggesting that the over-
estimation of variability in anisotropic tensors is much bigger than the
sources of real variability in the MRI experiment.

Discussion

Both the theoretic analysis and the experimental results support
the claim that a Euclidean metric is more appropriate than an affine-
invariant metric for the analysis of diffusion coefficients and tensors.

The relationship between distribution and a metric

ADCs are found to be Cartesian quantities, which means that they
are expected to have a normal distribution that coincides with the
Euclidean metric. This expectance is verified by the Monte Carlo
simulations (Figs. 3 and 4) that show ADCs better approximated by
normal distribution. In contrast, the log-normal distribution that
coincides with a scale-invariant metric was found an inappropriate
approximation for a wide range of ADCs, and especially for lower
values, yielding extreme bias in analysis such as average estimation.
Finally, the variability maps that were generated with a Euclidean
metric correspond to the type of noise expected, both in the synthetic
(Figs. 5C and F) and real DTI experiments (Figs. 6A and 7A). This is
while the Log-Euclidean metric provided variability maps correlated
with tensor shape (ratio between eigenvalues), reflecting the noise
properties less.

Finding ADCs to be better approximated by a normal distribution
reasserts the empirical findings in Pajevic and Basser (2003) where it
was found that the diffusion tensor elements are normally distributed
for the SNR range N2. Given the predicted relationship between the
log-normal distributed DWIs and the normal distributed ADCs we can
review the connection between the signal and the Trace of the
diffusion tensor in Basser and Jones (2002), where it was proved that

Yn
i=1

Si

 !1=n

= S0e
−βtr Dð Þ ð19Þ

for a scalar β. This equation is not restricted to isotropic tensors,
and the signal intensities can be obtained using a “balanced” High
Angular Resolution Diffusion Imaging (HARDI) acquisition. Taking
the logarithm of both sides of Eq. (19) it is clear that the arith-
metic average of the log of the DW signals is proportional to tr(D),
which is a linear combination of elements of the diffusion tensor
(Basser and Pierpaoli, 1998). Based on our findings we can also
review Eq. (13), which is by far the most common way diffusion is
related to DWIs, and deduce that this is an optimized fitting
procedure for DWIs when the distribution of noise is not known.
This relationship was originally derived in Stejskal (1965) by fitting
a slope acquired in multiple experimental results, without estima-
ting noise distributions. We can also conclude that if the distri-
bution is known, there should be other fitting procedures that
account for the exact distribution. We note, however, that the
Rician distribution may be a good approximation for the distri-
bution only when Johnson noise is the main noise component. Our
results (Figs. 6D and 7A) suggest that this may not always be the
case, especially for in vivo imaging.

The statistical approach and distribution investigations in the
context of metric selection are introduced here as a novel
comparison tool. Previous papers (e.g., Arsigny et al., 2006; Fillard
et al., 2007) compared the metrics indirectly through the results
obtained by a chosen analysis method (e.g., segmentation, interpo-
lation, regularization). An indirect quantitative comparison of the
metrics is questionable due to two factors: (1) Usually in tissue
samples, there is no ground truth, making the quantification of
goodness-of-fit hard. (2) Processing methods usually include
inherent factors, which are calibrated for given types of data; metric
selection affects the calibration of such factors, and thus, even if
synthetic ground truth is available, applying identical frameworks is
useless, since each framework may have different inherent factors



Fig. 5. Variability maps for Monte Carlo simulation. The ADC and FA maps compared to the (C, F) Euclidean metric and (D, G) Log-Euclidean metric variability maps for two levels of
SNR. The variability maps are rendered with a logarithmic dynamic range; the color bar represents the exponents. The simulation yielded a map similar to the ADC for the Euclidean
metric and similar to the FA for the Log-Euclidean metric. Maps of negative tensors (E, H) that were encountered in the linear fit show a drastic increase with noise, yet the
overestimation of the Log-Euclidean metric in white matter voxels appears even when a small number of negative tensors is encountered.
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that optimize its performances. The distribution investigation and
variability estimations that we presented here try to circumvent the
comparison by applications such as regularization or segmentation.
Table 1
Correlation coefficient values for the Euclidean and Log-Euclidean synthetic data
variability maps with the ADC and the FA maps for various SNR levels.

SNR Correlation—ADC Correlation—FA Mean log intensity

Euclidean map 50 0.4879 0.3515 –5.3346
20 0.5053 0.3503 –3.6856
15 0.5146 0.3473 –3.0129
7 0.5297 0.3269 –1.7651
3.5 0.5745 0.2723 –0.7016

Log-Euclidean
map

50 –0.2839 0.7736 –5.2012
20 –0.3233 0.7986 –3.5278
15 –0.3466 0.808 –2.8174
7 –0.4126 0.812 –1.4076
3.5 –0.4854 0.7653 0.0369

The correlation is calculated against the log intensity of the variability maps. The mean
log intensity over the entire image is given as well. As SNR decreases the mean log
intensity for both maps, the correlation of the Euclidean map with ADC and the
correlation of the Log-Euclidean map with FA increase.
We expect that the tools we introduced here may also be used to
investigate the effect of other analysis choices, such as fitting
procedures, image correction schemes, and tensor coordinate system
selections.

The relevancy of an affine-invariant metric

The ADC distribution around values of 1×10-3 mm2/s, which is
found to be close to both normal and log-normal distributions
(Fig. 3), suggests that for many brain tissues, the selection of a
metric will have a small effect on any analysis. Indeed, close obser-
vation of previous papers that present Affine-invariant or Log-
Euclidean approaches versus Euclidean approaches (Arsigny et al.,
2006; Fillard et al., 2007) shows that most differences are found
either in CSF (high ADC) or in very anisotropic white matter (low
ADC perpendicular to the fiber).

The simulations predict that using the different metrics mainly
affects the analysis of extreme (either low or high) ADC values (Fig. 3).
The greatest effect of the Affine-invariant metric is predicted near
small ADC values. The bias in low ADC values (Fig. 4) manifests again
in the high FA tensor case, where one of the orientations has a low



Fig. 6. Variability maps for repeated acquisition. The (A) Euclidean metric and (B) Log-Euclidean metric still resemble an ADC and an FA map accordingly. A small additional noise
element can be observed. When canceling motion correction the variability increases yet the (D) Euclidean variability is increased mainly around CSF areas, and the (E) Log-
Euclidean variability is increased in white matter voxels. (C, F) The number of negative tensors remains similar.
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ADC value. Indeed the Log-Euclidean variability maps consistently
estimate extreme variability values in white matter voxels. The over-
estimation is the consequence of the two constraints imposed by
affine-invariant metrics: positiveness and scale invariance, and poses
an obstacle in the utility of these metrics to the analysis of brains.
Fig. 7. Variability maps for noisier data. The (A) Euclidean metric and (B) Log-Euclidean me
(D) FA maps. The additional noise components are visible in the Euclidean map but are less
anisotropic tensors is much bigger than the sources of real variability in the MRI experime
The positiveness constraint
Positiveness is imposed by the Affine-invariant metric. Indeed, the

ADC as a physical quantity is non-negative. However, noise, syste-
matic artifacts, or even insufficient experimental designs can result in
ADC measurements with negative values, i.e., SiNS0. Moreover, the
tric variability maps of a noisy 8 repetition experiment are compared with (C) ADC and
visible in the Log-Euclidean map. This suggests that the overestimation of variability in
nt.
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value of a zero ADC, while hard to achieve physically, is still
admissible. It means that, on average, a particle does not move from
its original position during any finite diffusion time. However, an
ADCb0 causes the distance (5) to be undefined and an ADC of zero
causes it to diverge. In our experiments here negative eigenvalues
appear in all noise levels, their number increases as noise increases,
and they appear to be concentrated on specific locations. Within the
brain higher FA voxels (white matter) show more tendency to fit
negative tensors.

In a single measurement, correcting a negative diffusivity with a
small positive value (as recommended by the Log-Euclidean fit)
will yield an ADC closer to the real, assumed positive, value.
However, when performing repeated measurements or applying a
statistical framework we expect that the noise component, which
may cause negative values in a single experiment, will cancel out
in the averaging. This is indeed the case when the noise is Rician
and the Euclidean related arithmetic mean is used. However, using
the geometric mean introduces bias (Fig. 4), and the ADC as well
as the eigenvalues of the diffusion tensor end up being over-
estimated. A better estimation for diffusion coefficients and tensors
may be obtained by incorporating neighborhood information or by
outlier analysis that eliminates the measurement that cause
negative values (Chang et al., 2005). Such analysis is less affected
by metric selection and is beyond the scope of this paper.

The need to correct negative eigenvalues is more a practical
need than a mathematical requirement, arising when, for instance,
negative eigenvalues cause FA values to be greater than 1 on FA
maps. The correction is also useful for tractography methods, which
dictate the orientation and size of each step as a function of positive
eigenvalues. Positivity may then be considered as a practical
requirement and several approaches have been suggested to enforce
it (Koay et al., 2006). Positivity may very well be a desired property
for ADCs or diffusion tensors, yet, probably not at the cost of
assuming affine invariance. The Affine-invariant metric family is the
only one that maintains affine invariance, but those are not the only
metrics that preserves positiveness. It is interesting to note in this
context that due to the maximum principle, the Euclidean metric (a.
k.a. Frobenius norm), applied on positive-definite tensors, will
remain in the positive-definite domain (Welk et al., 2007) and has
been found useful for many tensor processing techniques, including
regularization (Weickert and Hagen, 2006).

Affine invariance
Comparing the variability maps with the negative tensors maps

(Figs. 5 and 6) shows that negative tensors increase the variability in
Log-Euclidean maps, yet overestimation is also found in voxels where
negative tensors were not encountered. The overestimation is the
result of the Affine-invariant metric property that maps small ADCs
or high FA tensors to infinity, thus artifactually increasing their
distance from other tensors. It is interesting to review the way an
Affine-invariant metric was derived by Maaβ (1971). In his study of
rotation tensors, Maaβ came up with the metric in Eq. (2) since he
wanted the operator for those tensors to be affine-invariant. In order
to calculate geodesics with this metric a second assumption of
positive definiteness was introduced. This requirement was appro-
priate since proper rotation tensors are positive. In the application of
the Affine-invariant metric to diffusion tensors the motivation was to
preserve the positiveness of these tensors and once the metric was
chosen, affine invariance resulted as a consequence. Based on our
findings, it is our claim that affine invariance is not a desirable
property for diffusion tensor analysis. Affine invariance would be
desired for a quantity that has an arbitrary scale (such as DWIs), yet
ADCs have a physical scale related through the Einstein equation in
Eq. (14) to the physical displacement molecules traverse during the
experiment (Stejskal, 1965), so preserving their scale is important in
a distance measure.
Following the observation that DWIs are better approximated by
the log-normal distribution, and since all MRI images have a similar
noise model, we predict that affine-invariant (or scale-invariant for
the scalar case) metrics will be useful for other MR contrasts analysis,
and more so for low SNR modalities (such as fMRI). However, we
note that in the noise levels and number of repetitions expected in a
realistic DWI experiment, the Monte Carlo simulation predicts that
the normal distribution will be a good approximation as well. A
better candidate for a scale-invariant metric is the variability mea-
sure we proposed here, Trace(M), where M is a fourth-order tensor.
The variability measure cannot be estimated to be negative, and the
more informative logarithmic scale dynamic range used here
suggests that it is likely to be log-normal distributed. We speculate
that a similar statistical analysis to the one performed here could also
assert that a proper metric for the fourth-order tensor M is indeed
affine-invariant. This will put in perspective analysis tools that use
Affine-invariant metrics on this kind of tensors (e.g., Ghosh et al.,
2008; Barmpoutis et al., 2009).

The effect on statistical inferences
Although statistical frameworks for tensor analysis exist, it is not

yet a common practice to use them for statistical inferences in DTI.
Whitcher et al. (2007) investigated generalization of scalar statistical
tests to tensor statistical tests and reported on the effect of Euclidean
and Log-Euclidean metrics on the statistical tests. The results were
consistently in favor of the Euclidean metric, which led the authors to
conclude that there is no reason to prefer the Log-Euclideanmetric for
hypothesis tests. Another application for tensor statistics was sug-
gested by Commowick et al. (2008), where a t-test for tensors was
applied. Following the results we show here, we can better
understand the consequences of using the Log-Euclidean metric.
Most parametric methods are based on the estimation of a variability
measure. Here we predict that when using the Log-Euclidean metric
the variability will be biased for high FA tensors, i.e., for white matter.
As a result, a group that may be initially considered homogeneous
(e.g., healthy controls) will show high variability, and as a result, the
power and significance of any parametric test will decrease
dramatically. Observing the results reported in Commowick et al.
(2008), we note that most of the significant results reported are in
non-white matter structures, suggesting that the results are partial;
considerably more white matter voxels may actually be affected.

To illustrate the effect of the scale invariance constraint on
statistical inference we provide the following simple example.
Suppose a control experiment where in two given voxels the ADC
values obtained were 3×10-3 mm2/s and 0.2×10-3 mm2/s. Now
suppose that the patient undergoes a treatment followed by a second
scan where the same voxels now yield values of 1.5×10-3 mm2/s and
0.1×10-3 mm2/s. The first voxel shows a transition from an ADC
typical for free water to an ADC typical of white matter, which is most
likely to be attributed to the treatment and unlikely to be attributed to
Johnson noise. The second voxel originally showed low values, typical
of diffusion perpendicular to fibers, and the value was slightly lower
following the treatment, a change that could be attributed to noise.
We would expect a test to reflect the large change in the first voxel
relative to the small change in the second. However, results from tests
using a scale-invariant metric would suggest that the same effect
caused the changes in both voxels (since the distances are equal).

Swelling effect
Previous studies pointed out that the main effect of selecting the

Affine-invariant metric rather than the Euclidean metric is encoun-
tered when interpolating or averaging between two anisotropic
tensors (Batchelor et al., 2005). The Euclidean metric does not
preserve the determinant (which is proportional to the volume of
the diffusion ellipsoid described by the tensor), and as a result, the
interpolated tensor may have a determinant larger than the initial
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tensors, i.e., it may be “swollen.” With the introduction of the
Affine-invariant and Log-Euclidean metrics it was shown that the
swelling effect is reduced (Arsigny et al., 2006). In practice, the
swelling effect is usually obviated by applying piecewise smoothed
operators, or pre-segmentation, that will avoid interpolating initially
distant tensors. In theory, it is still interesting to understand why
the swelling effect occurs.

The determinant of a tensor represents the volume of an ellipsoid
and reflects the shape of the ellipsoid. Elongated ellipsoids have lower
determinants than rounded ellipsoids that share the same Trace. We
claim that with the absence of prior geometric information (such as
the expected anisotropy or orientation), the swelling effect is
predicted by the MR measurement, and there is no physical reason
to preserve the determinant. Assume two anisotropic tensors, with
equal eigenvalues, and orientations that are perpendicular to one
another. If we assume that those two tensors were taken in the same
experiment (i.e., the same reference frame), then the combined effect
of both yields an isotropic displacement profile. Only if we assume
that the tensors describe separate experiments and that the variability
between the experiments caused the reference frame to rotate should
the interpolation preserve the anisotropy, and hence the determinant
of the tensors. This could be the case where we assume that the
tensors are taken along the same fiber or across subjects on the same
fiber. This additional information is not appropriate for the general
case, where we cannot assume that the source of variability affects the
orientation of the frame of reference, or that the tensors are on the
same geometrical structure. In any case, preserving the Trace is
desired, since the Trace may be regarded as proportional to the bulk,
orientationally averaged diffusivity. Indeed the Trace is preserved by
the Euclidean metric.

Coordinate systems for diffusion tensors

Once a Euclidean metric is selected, defining the distance
function still requires a selection of tensor coordinate system. The
Euclidean metric is rotationally invariant, which means that ortho-
gonal basis (such as rotated reference frames) yields the same
distance. In our simulations we used the canonical tensor represen-
tation, which has a physical significance since it provides estimations
of the variance and covariance of molecule displacement along the
image main axis. Other tensor coordinate systems have been
proposed for analysis; these include eigen-components (Tschum-
perlé and Deriche, 2002), rotation angles (Andersson, 2008),
Cholesky decomposition (Koay et al., 2006), and Iwasawa decom-
position (Gur et al., 2009; Barmpoutis et al., 2009). Some of these
choices have clear physical meaning as well. A coordinate system
based on DTI measures such as FA and ADC was suggested in
Kindlmann et al. (2007). The different coordinate systems are not
orthogonal with respect to each other, which means that they yield
different distances if using the Euclidean metric. The question of the
effect of coordinate system selection on the analysis of diffusion
tensor MRI data is reserved for future research.

Common to all metric selections in the Riemannian framework is
that they are global, which means that the distance between tensors
D1 and D2 does not depend on their location in the image or on their
association with a certain tissue type or image segment. Our analysis
predicts that tissue specific distance functions, where different
metrics would apply to different segments, should be useful for DTI
analysis because each segment may have its own distribution
properties and sources of variation. Analysis methods similar to
Isomaps (Verma et al., 2007) may be useful for this cause.

Summary

The selection of a distance function is the first step in the analysis
of any data, but the selection of a metric cannot be driven by mathe-
matical considerations alone. Practical and physical considerations
must be used. In this paper we reexamine the connection between
distribution and distance in order to investigate the relevance of the
Euclidean and the Affine-invariant metrics for analyzing diffusion MR
measurements. Our findings suggest that the Euclidean metric is
consistent with the expected statistical properties of tensor distribu-
tions and the Affine-invariant metric is not. We show that in most
cases the effect of metric selection may be minor, but in certain cases
the bias that is introduced by the affine invariance restriction causes
large deviations from the expected values. We therefore do not
recommend the use of the Affine-invariant metric or its related
metrics for the analysis of diffusion tensors. We predict that the
mathematical framework that underpins the use of the Affine-
invariant metric should be applied to other types of quantities that
are directly related to a measured physical quantity, such as raw MR
signal, or for special cases of diffusion measurement, where the
sources of variability dictate a log-normal distribution.
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Appendix A. Affine invariance

The tangent space at every point on the manifold of symmetric
positive definite 3×3 matrices, Y∈P3, may be identified with the
vector space of 3×3 symmetric matrices, SYM3. Thus, the Riemannian
metric at point Y is defined in terms of the scalar product on SYM3 as
(Lang, 1999)

ds2 = tr Y−1dY
� �2	 


: ð20Þ

This metric is by definition positive-definite (see Lang, 1999; Terras,
1988). Define the action of g∈GL(3) (any 3×3 invertible matrix)
on Y∈Pn as Y[g]=gTYg. The metric is invariant under the action of
GL(3): Let W=Y[g] where the differential is given by dW=dY[g].
Then, upon plugging everything in ds2 it follows that

ds2 = tr Y−1dY
� �2	 


= tr gW−1gTg−TdWg−1
� �2	 


= tr W−1dW
� �2	 


:

ð21Þ

Being GL(3) invariant, the metric does not depend on the selection
of coordinate system. This is since translation between local coordi-
nate systems is linear. Similarly the metric is invariant with respect
to the inversion map Y |→ Y-1, which makes it affine-invariant.

B. The matrix logarithm

The matrix logarithm operator, log(D), for a symmetric 3×3
matrix, D, is defined as

log Dð Þ = R
log a1ð Þ

log a2ð Þ
log a3ð Þ

0
@

1
ART

: ð22Þ

The entries ai compose a diagonal matrix, A, that together with a
rotation matrix, R, forms the eigen-decomposition, D=RART.
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C. The distribution of stochastic estimated ADC

We assume normal distribution of particle displacements,
xt∼N(x0, σ2(t)). The probability of measuring a certain displace-
ment R=(xt– x0)2 is then distributed as R∼σ2(t)χ1

2, where χk
2 is

the chi-square distribution with k degrees of freedom. In the
case of self-diffusion of water molecules, the displacement of all
molecules is mutually independent and therefore for n indepen-
dent experiments we get

Xn
i=1

Rifσ2 tð Þχ2
n: ð23Þ

The distribution in Eq. (23) means that even with a constant and
known diffusion coefficient the bulk diffusion measured on different
occasions will have a certain variability. However, usually in a
diffusion experiment the aim is to estimate an unknown diffusion
coefficient. According to Eq. (14), the estimated diffusion coefficient,
d̂, is proportional to the estimated variance, σ̂2(t):

d̂ =
σ̂2 tð Þ
2t

: ð24Þ

The variance can be estimated with the maximum likelihood
estimator (MLE) as σ2 tð Þ = Pn

i = 1 Ri
� �

= n. From Eq. (23) we get the
distribution of the estimated variance to be

σ̂2 tð Þfσ2 tð Þ
n

χ2
n: ð25Þ

We can then substitute d ̂ from Eq. (24) into Eq. (25) to get the
distribution of the estimated diffusion coefficient:

d̂f
σ2 tð Þ
2tn

χ2
n =

2dt
2tn

χ2
n =

d
n
χ2

n: ð26Þ

D. The Anderson–Darling test

For the normal distribution, the test statistic, A2, is

A2 = 1 +
0:75
n

+
2:25
n2

	 

×

× −n −
Xn
i=1

2i − 1
n

log wið Þ + log 1− wn− i + 1
� �� � !

;

ð27Þ

where n is the sample size, and w is the standard normal CDF, with
mean and standard deviation that are estimated from the sample.
The value of A2 is then compared with 0.752, which is the critical
value for the normal distribution and α=0.05 (D'Agostino and
Stephens, 1986).
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